12 research outputs found

    Adaptive mesh simulations of compressible flows using stabilized formulations

    Get PDF
    This thesis investigates numerical methods that approximate the solution of compressible flow equations. The first part of the thesis is committed to studying the Variational Multi-Scale (VMS) finite element approximation of several compressible flow equations. In particular, the one-dimensional Burgers equation in the Fourier space, and the compressible Navier-Stokes equations written in both conservative and primitive variables are considered. The approximations made for the VMS formulation are extensively researched; the design of the matrix of stabilization parameters, the definition of the space where the subscales live, the inclusion of the temporal derivatives of the subscales, and the non-linear tracking of the subscales are formulated. Also, the addition of local artificial diffusion in the form of shock capturing techniques is included. The accuracy of the formulations is studied for several regimes of the compressible flow, from aeroacoustic flows at low Mach numbers to supersonic shocks. The second part of the thesis is devoted to make the solution of the smallest fluctuating scales of the compressible flow affordable. To this end, a novel algorithm for h−h-refinement of computational physics meshes in a distributed parallel setting, together with the solution of some refinement test cases in supercomputers are presented. The definition of an explicit a-posteriori error estimator that can be used in the adaptive mesh refinement simulations of compressible flows is also developed; the proposed methodology employs the variational subscales as a local error estimate that drives the mesh refinement. The numerical methods proposed in this thesis are capable to describe the high-frequency fluctuations of compressible flows, especially, the ones corresponding to complex aeroacoustic applications. Precisely, the direct simulation of the fricative [s] sound inside a realistic geometry of the human vocal tract is achieved at the end of the thesis.Esta tesis investiga métodos numéricos que aproximan la solución de las ecuaciones de flujo compresible. La primera parte de la tesis está dedicada al estudio de la aproximación numérica del flujo compresible por medio del método multiescala variacional (VMS) en elementos finitos. En particular, se consideran la ecuación de Burgers unidimensional descrita en el espacio de Fourier y las ecuaciones de Navier-Stokes de flujo compresible escritas en variables conservativas y primitivas. Las aproximaciones hechas para plantear la formulación VMS son ampliamente investigadas; el diseño de la matriz de parámetros de estabilización, la definición del espacio donde viven las subescalas, la inclusión de las derivadas temporales de las subescalas y el seguimiento no lineal de las subescalas son particularidades de la formulación que se analizan para cada una de las ecuaciones consideradas. Además, se incluye la adición de difusión artificial local en forma de técnicas de captura de choque. La precisión de las formulaciones se estudia para varios regímenes del flujo compresible, desde flujos aeroacústicos a bajos números de Mach hasta choques supersónicos. La segunda parte de la tesis está dedicada a hacer asequible la solución de las escalas fluctuantes más pequeñas del flujo compresible. Con este fin, se presenta un algoritmo novedoso para el refinamiento hh de las mallas de física computacional usadas en computación distribuida en paralelo. Además, se demuestra la solución en superordenadores de algunos casos de prueba del refinamiento de mallas. También se desarrolla la definición de un estimador de error explícito a posteriori que se puede usar en las simulaciones adaptativas de refinamiento de malla de flujos compresibles; la metodología propuesta emplea las subescalas variacionales como una estimación de error local que induce el refinamiento de la malla. Los métodos numéricos propuestos en esta tesis son capaces de describir las fluctuaciones de alta frecuencia de los flujos compresibles, especialmente los correspondientes a aplicaciones aeroacústicas complejas. Precisamente, la simulación directa del sonido consonántico fricativo [s] dentro de una geometría realista del tracto vocal humano se demuestra al final de la tesis

    Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

    Get PDF
    No separate or additional fees are collected for access to or distribution of the work.In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper are its capability of handling multiple types of elements in two and three dimensions (triangular, quadrilateral, tetrahedral, and hexahedral), the small amount of memory required per processor, and the parallel scalability up to thousands of processors. The presented algorithm is also capable of dealing with nonbalanced hierarchical refinement, where multirefinement level jumps are possible between neighbor elements. An algorithm for dealing with load rebalancing is also presented, which allows us to move the hierarchical data structure between processors so that load unbalancing is kept below an acceptable level at all times during the simulation. A particular feature of the proposed algorithm is that arbitrary renumbering algorithms can be used in the load rebalancing step, including both graph partitioning and space-filling renumbering algorithms. The presented algorithm is packed in the Fortran 2003 object oriented library \textttRefficientLib, whose interface calls which allow it to be used from any computational physics code are summarized. Finally, numerical experiments illustrating the performance and scalability of the algorithm are presented.Peer ReviewedPostprint (published version

    Variational multiscale error estimators for the adaptive mesh refinement of compressible flow simulations

    Get PDF
    This article investigates an explicit a-posteriori error estimator for the finite element approximation of the compressible Navier–Stokes equations. The proposed methodology employs the Variational Multi-Scale framework, and specifically, the idea is to use the variational subscales to estimate the error. These subscales are defined to be orthogonal to the finite element space, dynamic and non-linear, and both the subscales in the interior of the element and on the element boundaries are considered. Another particularity of the model is that we define some norms that lead to a dimensionally consistent measure of the compressible flow solution error inside each element; a scaled -norm, and the calculation of a physical entropy measure, are both studied in this work. The estimation of the error is used to drive the adaptive mesh refinement of several compressible flow simulations. Numerical results demonstrate good accuracy of the local error estimate and the ability to drive the adaptative mesh refinement to minimize the error through the computational domain.Peer ReviewedPostprint (author's final draft

    Solution of low Mach number aeroacoustic flows using a Variational Multi-Scale finite element formulation of the compressible Navier–Stokes equations written in primitive variables

    Get PDF
    In this work we solve the compressible Navier–Stokes equations written in primitive variables in order to simulate low Mach number aeroacoustic flows. We develop a Variational Multi-Scale formulation to stabilize the finite element discretization by including the orthogonal, dynamic and non-linear subscales, together with an implicit scheme for advancing in time. Three additional features define the proposed numerical scheme: the splitting of the pressure and temperature variables into a relative and a reference part, the definition of the matrix of stabilization parameters in terms of a modified velocity that accounts for the local compressibility, and the approximation of the dynamic stabilization matrix for the time dependent subscales. We also include a weak imposition of implicit non-reflecting boundary conditions in order to overcome the challenges that arise in the aeroacoustic simulations at low compressibility regimes. The order of accuracy of the method is verified for two- and three-dimensional linear and quadratic elements using steady manufactured solutions. Several benchmark flow problems are studied, including transient examples and aeroacoustic applications.Peer ReviewedPostprint (author's final draft

    Modelamiento matemático de un secador solar de plantas aromáticas

    Get PDF
    En este trabajo se realiza el planteamiento de distintos modelos matemáticos que posibilitan la predicción del comportamiento hidrodinámico y térmico de un secador solar de plantas medicinales y aromáticas, específicamente de Melissa o�cinalis. A partir del planteamiento de las ecuaciones de conservación en los distintos elementos constitutivos se predice el estado �nal del secador y del producto. Obteniendo la distribución de humedad, velocidad, presión y temperatura en el aire, además de la temperatura y humedad en los elementos sólidos al realizar un análisis por el método de volumenes �nitos. Se plantean dos modelos distintos: un modelo tramo a tramo con dos distintas aproximaciones a la cinética de secado y un modelo multidimensional. Al validar las simulaciones con trabajos experimentales se encontró una mejor descripción del comportamiento de secado mediante el modelo tramo a tramo con la cinética de secado descrita por la analog��a con la transferencia de calor. / Abstract. An approach of the heat and mass transfer related in the drying process of Melissa officinalis plants inside a Hohenheim type solar tunnel dryer is made by the numerical solution of the governing equations and it's validation with experimental results. The models makes possible the prediction of the hydrodynamic and thermal behavior of the solar drying process by means of the �nite volumes method applied in the dryer's domain. Two di�erent models are done: a section by section model with two di�erent drying kinetics approaches and a multi-dimensional model. A better description of the drying behavior inside the tunnel is found with the section by section model with heat transfer analogy as drying kinetics approach by validating the simulations with experimental work.Maestrí

    Adaptive mesh simulations of compressible flows using stabilized formulations

    No full text
    This thesis investigates numerical methods that approximate the solution of compressible flow equations. The first part of the thesis is committed to studying the Variational Multi-Scale (VMS) finite element approximation of several compressible flow equations. In particular, the one-dimensional Burgers equation in the Fourier space, and the compressible Navier-Stokes equations written in both conservative and primitive variables are considered. The approximations made for the VMS formulation are extensively researched; the design of the matrix of stabilization parameters, the definition of the space where the subscales live, the inclusion of the temporal derivatives of the subscales, and the non-linear tracking of the subscales are formulated. Also, the addition of local artificial diffusion in the form of shock capturing techniques is included. The accuracy of the formulations is studied for several regimes of the compressible flow, from aeroacoustic flows at low Mach numbers to supersonic shocks. The second part of the thesis is devoted to make the solution of the smallest fluctuating scales of the compressible flow affordable. To this end, a novel algorithm for h−h-refinement of computational physics meshes in a distributed parallel setting, together with the solution of some refinement test cases in supercomputers are presented. The definition of an explicit a-posteriori error estimator that can be used in the adaptive mesh refinement simulations of compressible flows is also developed; the proposed methodology employs the variational subscales as a local error estimate that drives the mesh refinement. The numerical methods proposed in this thesis are capable to describe the high-frequency fluctuations of compressible flows, especially, the ones corresponding to complex aeroacoustic applications. Precisely, the direct simulation of the fricative [s] sound inside a realistic geometry of the human vocal tract is achieved at the end of the thesis.Esta tesis investiga métodos numéricos que aproximan la solución de las ecuaciones de flujo compresible. La primera parte de la tesis está dedicada al estudio de la aproximación numérica del flujo compresible por medio del método multiescala variacional (VMS) en elementos finitos. En particular, se consideran la ecuación de Burgers unidimensional descrita en el espacio de Fourier y las ecuaciones de Navier-Stokes de flujo compresible escritas en variables conservativas y primitivas. Las aproximaciones hechas para plantear la formulación VMS son ampliamente investigadas; el diseño de la matriz de parámetros de estabilización, la definición del espacio donde viven las subescalas, la inclusión de las derivadas temporales de las subescalas y el seguimiento no lineal de las subescalas son particularidades de la formulación que se analizan para cada una de las ecuaciones consideradas. Además, se incluye la adición de difusión artificial local en forma de técnicas de captura de choque. La precisión de las formulaciones se estudia para varios regímenes del flujo compresible, desde flujos aeroacústicos a bajos números de Mach hasta choques supersónicos. La segunda parte de la tesis está dedicada a hacer asequible la solución de las escalas fluctuantes más pequeñas del flujo compresible. Con este fin, se presenta un algoritmo novedoso para el refinamiento hh de las mallas de física computacional usadas en computación distribuida en paralelo. Además, se demuestra la solución en superordenadores de algunos casos de prueba del refinamiento de mallas. También se desarrolla la definición de un estimador de error explícito a posteriori que se puede usar en las simulaciones adaptativas de refinamiento de malla de flujos compresibles; la metodología propuesta emplea las subescalas variacionales como una estimación de error local que induce el refinamiento de la malla. Los métodos numéricos propuestos en esta tesis son capaces de describir las fluctuaciones de alta frecuencia de los flujos compresibles, especialmente los correspondientes a aplicaciones aeroacústicas complejas. Precisamente, la simulación directa del sonido consonántico fricativo [s] dentro de una geometría realista del tracto vocal humano se demuestra al final de la tesis

    Adaptive mesh simulations of compressible flows using stabilized formulations

    No full text
    This thesis investigates numerical methods that approximate the solution of compressible flow equations. The first part of the thesis is committed to studying the Variational Multi-Scale (VMS) finite element approximation of several compressible flow equations. In particular, the one-dimensional Burgers equation in the Fourier space, and the compressible Navier-Stokes equations written in both conservative and primitive variables are considered. The approximations made for the VMS formulation are extensively researched; the design of the matrix of stabilization parameters, the definition of the space where the subscales live, the inclusion of the temporal derivatives of the subscales, and the non-linear tracking of the subscales are formulated. Also, the addition of local artificial diffusion in the form of shock capturing techniques is included. The accuracy of the formulations is studied for several regimes of the compressible flow, from aeroacoustic flows at low Mach numbers to supersonic shocks. The second part of the thesis is devoted to make the solution of the smallest fluctuating scales of the compressible flow affordable. To this end, a novel algorithm for h−h-refinement of computational physics meshes in a distributed parallel setting, together with the solution of some refinement test cases in supercomputers are presented. The definition of an explicit a-posteriori error estimator that can be used in the adaptive mesh refinement simulations of compressible flows is also developed; the proposed methodology employs the variational subscales as a local error estimate that drives the mesh refinement. The numerical methods proposed in this thesis are capable to describe the high-frequency fluctuations of compressible flows, especially, the ones corresponding to complex aeroacoustic applications. Precisely, the direct simulation of the fricative [s] sound inside a realistic geometry of the human vocal tract is achieved at the end of the thesis.Esta tesis investiga métodos numéricos que aproximan la solución de las ecuaciones de flujo compresible. La primera parte de la tesis está dedicada al estudio de la aproximación numérica del flujo compresible por medio del método multiescala variacional (VMS) en elementos finitos. En particular, se consideran la ecuación de Burgers unidimensional descrita en el espacio de Fourier y las ecuaciones de Navier-Stokes de flujo compresible escritas en variables conservativas y primitivas. Las aproximaciones hechas para plantear la formulación VMS son ampliamente investigadas; el diseño de la matriz de parámetros de estabilización, la definición del espacio donde viven las subescalas, la inclusión de las derivadas temporales de las subescalas y el seguimiento no lineal de las subescalas son particularidades de la formulación que se analizan para cada una de las ecuaciones consideradas. Además, se incluye la adición de difusión artificial local en forma de técnicas de captura de choque. La precisión de las formulaciones se estudia para varios regímenes del flujo compresible, desde flujos aeroacústicos a bajos números de Mach hasta choques supersónicos. La segunda parte de la tesis está dedicada a hacer asequible la solución de las escalas fluctuantes más pequeñas del flujo compresible. Con este fin, se presenta un algoritmo novedoso para el refinamiento hh de las mallas de física computacional usadas en computación distribuida en paralelo. Además, se demuestra la solución en superordenadores de algunos casos de prueba del refinamiento de mallas. También se desarrolla la definición de un estimador de error explícito a posteriori que se puede usar en las simulaciones adaptativas de refinamiento de malla de flujos compresibles; la metodología propuesta emplea las subescalas variacionales como una estimación de error local que induce el refinamiento de la malla. Los métodos numéricos propuestos en esta tesis son capaces de describir las fluctuaciones de alta frecuencia de los flujos compresibles, especialmente los correspondientes a aplicaciones aeroacústicas complejas. Precisamente, la simulación directa del sonido consonántico fricativo [s] dentro de una geometría realista del tracto vocal humano se demuestra al final de la tesis

    Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

    No full text
    No separate or additional fees are collected for access to or distribution of the work.In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper are its capability of handling multiple types of elements in two and three dimensions (triangular, quadrilateral, tetrahedral, and hexahedral), the small amount of memory required per processor, and the parallel scalability up to thousands of processors. The presented algorithm is also capable of dealing with nonbalanced hierarchical refinement, where multirefinement level jumps are possible between neighbor elements. An algorithm for dealing with load rebalancing is also presented, which allows us to move the hierarchical data structure between processors so that load unbalancing is kept below an acceptable level at all times during the simulation. A particular feature of the proposed algorithm is that arbitrary renumbering algorithms can be used in the load rebalancing step, including both graph partitioning and space-filling renumbering algorithms. The presented algorithm is packed in the Fortran 2003 object oriented library \textttRefficientLib, whose interface calls which allow it to be used from any computational physics code are summarized. Finally, numerical experiments illustrating the performance and scalability of the algorithm are presented.Peer Reviewe

    Variational multi-scale finite element approximation of the compressible Navier-Stokes equations

    No full text
    Purpose - The purpose of this paper is to apply the variational multi-scale framework to the finite element approximation of the compressible Navier-Stokes equations written in conservation form. Even though this formulation is relatively well known, some particular features that have been applied with great success in other flow problems are incorporated. Design/methodology/approach - The orthogonal subgrid scales, the non-linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is given, and the adjoint of the non-linear operator including the volumetric part of the convective term is defined. Because the subgrid stabilization method works in the streamline direction, an anisotropic shock capturing method that keeps the diffusion unaltered in the direction of the streamlines, but modifies the crosswind diffusion is implemented. The artificial shock capturing diffusivity is calculated by using the orthogonal projection onto the finite element space of the gradient of the solution, instead of the common residual definition. Temporal derivatives are integrated in an explicit fashion. Findings - Subsonic and supersonic numerical experiments show that including the orthogonal, dynamic, and the non-linear subscales improve the accuracy of the compressible formulation. The non-linearity introduced by the anisotropic shock capturing method has less effect in the convergence behavior to the steady state. Originality/value - A complete investigation of the stabilized formulation of the compressible problem is addressed.Peer ReviewedPostprint (author's final draft

    Variational multiscale error estimators for the adaptive mesh refinement of compressible flow simulations

    No full text
    This article investigates an explicit a-posteriori error estimator for the finite element approximation of the compressible Navier–Stokes equations. The proposed methodology employs the Variational Multi-Scale framework, and specifically, the idea is to use the variational subscales to estimate the error. These subscales are defined to be orthogonal to the finite element space, dynamic and non-linear, and both the subscales in the interior of the element and on the element boundaries are considered. Another particularity of the model is that we define some norms that lead to a dimensionally consistent measure of the compressible flow solution error inside each element; a scaled -norm, and the calculation of a physical entropy measure, are both studied in this work. The estimation of the error is used to drive the adaptive mesh refinement of several compressible flow simulations. Numerical results demonstrate good accuracy of the local error estimate and the ability to drive the adaptative mesh refinement to minimize the error through the computational domain.Peer Reviewe
    corecore